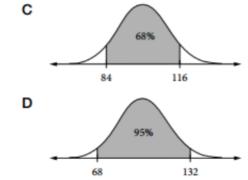

- 1 The time taken for all competitors to finish the 50 m freestyle at the school swimming carnival, X seconds, was found to follow a normal distribution where $X \sim N(45, 9)$. Find the following values.
 - (a) The time range in which you would expect to find the middle 95% of results.
 - (b) The percentage of students you would expect to take more than 48 seconds.
 - (c) The percentage of students you would expect to take less than 36 seconds.

2 $X \sim N(10, 4)$.

- (a) What is the range of x values in which you would expect to find the middle 68%?
- **(b)** What is the range of *x* values in which you would expect to find the middle 95%?
- (c) What is the range of x values in which you would expect to find the middle 99.7%?

- 3 The height X cm of a population is known to be distributed as $X \sim N(170, 81)$.
 - (a) What is the percentage of the population expected to be found in the range 152-188 cm?
 - (b) What is the percentage of the population expected to be taller than 197 cm?
 - (c) What is the percentage of the population expected to be shorter that 170 cm?
 - (d) What is the percentage of the population expected to be found in the range 161-197 cm?

4 The graph represents a continuous random variable which has a normal distribution.



The distribution is best represented by:

- A N(14, 26)
- B N(26, 12)
- C N(20, 9)
- **D** N(20,3)

5 Given *X* is normally distributed with a mean of 100 and a variance of 16, which of the following graphs correctly represents the distribution?

A 95%
B 68%

6 The marks *X* obtained by students in an examination were normally distributed with a mean of 85 and a standard deviation of 4. If the top 2.5% of students received a prize, find the minimum whole number score possible to receive a prize.

7	The mass M grams of a batch of commemorative coins is such that $M \sim N(50, 9)$. Each coin is weighed before packaging and will be rejected if its mass is less than 47 g. What is the percentage of coins expected to be rejected?
8	Packets of 'Greatstart' breakfast cereal are labelled as having a mass of 500 g. However, the machine that fills the packets actually follows a normal distribution with a mean of 510 g and a standard deviation of 5 g. What percentage of packets, correct to two decimal places, will have a mass less than 500 g?

- **12** (a) Using graphing software draw the graph of $f(x) = e^{-x^2}$.
- $\int_{-1}^{4} e^{-x^2} dx$ **(b)** Use Desmos to estimate

- 13 (a) Using graphing software, draw the graph of $f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{(x-\mu)^2}{2\sigma^2}}$, for:
 - (i) $\mu = 10, \sigma = 3$

 - (ii) $\mu = 0$, $\sigma = 1$ (b) Use the integration tool in the software to evaluate $\int_{u-3\sigma}^{\mu+3\sigma} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$ in each case in part (a).