MULTIPLE ROOTS OF A POLYNOMIAL EQUATION

A polynomial of degree n has n zeros, but they are not necessarily all different. You say that c is a zero of multiplicity r(r > 1) when the factor (x - c) occurs r times.

For example, if $P(x) = (x-1)^3(x-5)^2(x-6)$, then 1 is a zero of multiplicity three, 5 is a zero of multiplicity two and 6 is a zero of multiplicity one.

Furthermore, if x = c is a zero of multiplicity r of the real polynomial P(x), then x = c is also a zero of multiplicity (r-1) of the derived polynomial P'(x), a zero of multiplicity (r-2) of the second derived polynomial P''(x), and so on. The proof of this result follows.

If
$$P(x) = (x - c)^r S(x)$$
, where $r > 0$, $S(c) \neq 0$
then $P'(x) = r(x - c)^{r-1} S(x) + (x - c)^r S'(x)$
 $= (x - c)^{r-1} [rS(x) + (x - c)S'(x)]$
 $= (x - c)^{r-1} Q(x)$ [1]

i.e. the polynomial P'(x), has a zero x = c of multiplicity (r - 1).

Applying the product rule to P'(x) in [1] produces the polynomial P''(x) with a zero x = c of multiplicity (r - 2). If P(x) is a polynomial of degree n, then P'(x) must be a polynomial of degree (n - 1), P''(x) a polynomial of degree (n - 2), and so on. This property allows us to use calculus techniques to solve equations that are known to have multiple roots.

Example 15

Solve $x^3 - 4x^2 - 3x + 18 = 0$, given that it has a root of multiplicity 2.

Solution

Consider the polynomial $P(x) = x^3 - 4x^2 - 3x + 18$

Differentiate: $P'(x) = 3x^2 - 8x - 3$

Factorise: P'(x) = (3x + 1)(x - 3)

Solve:
$$P'(x) = 0$$
: $x = -\frac{1}{3}$, 3

As P(x) = 0 has a root of multiplicity 2 (i.e. a double root), the solution must be either $x = -\frac{1}{3}$ or x = 3, but not both.

Evaluate:
$$P\left(\frac{1}{3}\right) = -\frac{1}{27} - \frac{4}{9} + 1 + 18 = 17\frac{14}{27} \neq 0$$

$$P(3) = 27 - 36 - 9 + 18 = 0$$
. Thus $x = 3$ is a double zero.

$$P(x) = (x-3)(x-3)(x-a)$$

As
$$P(0) = 18$$
: $(-3) \times (-3) \times (-a) = 18$

$$a = -2$$

Thus
$$P(x) = (x-3)^2(x+2)$$

The roots of the equation are x = -2, 3, 3.