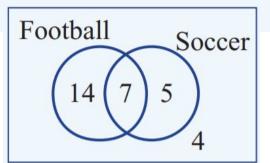

VENN DIAGRAMS - DEFINITIONS

A Venn Diagram is a diagram that represents all possible logical relations between a finite collection of different sets.

examples:



VENN DIAGRAMS - EXAMPLE OF USE

A survey of 30 people found that 21 like Australian Rules football and 12 like soccer. Also, 7 people like both football and soccer and 4 like neither football nor soccer.

a Construct a Venn diagram for the survey results.

- **b** How many people:
 - i like football or soccer?
 - ii do not like soccer?
 - iii like only football?

- i 26 like football or soccer or both
- ii 30 12 = 18 don't like soccer
- iii 14 like football but not soccer
- c If one of the 30 people was randomly selected, find:
 - i P(like football and soccer)

$$=\frac{7}{30}$$

ii P(like neither football nor soccer)

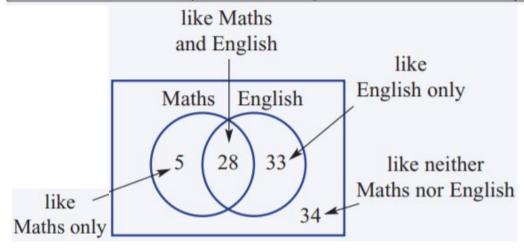
$$=\frac{4}{30}=\frac{2}{15}$$

iii P(like only soccer)

$$=\frac{5}{30}=\frac{1}{6}$$

TWO-WAYS TABLES - DEFINITIONS

Like Venn diagrams, Two-ways tables are useful ways to present events (i.e. list of all possible outcomes). example


	Like Skateboards	Do Not Like Skateboards	Totals
Like Snowmobiles	80	25	105
Do not like Snowmobiles	45	10	55
Totals	125	35	160

MathBits.com

VENN DIAGRAMS AND TWO-WAYS TABLES

The same information can be presented in a Venn diagram or a Two-ways table.

	Like Maths	Do not like Maths	Total
Like English	28	33	61
Do not like English	5	34	39
Total	33	67	100

Consider the two-way table below showing the eating and sleeping preferences of different animals at the zoo.

	Eats meat	No meat	Total
Sleeps during day	20	12	32
Only sleeps at night	40	28	68
Total	60	40	100

- **a** For a randomly selected animal, find:
 - i P(sleeps only at night)

- ii P(eats meat or sleeps during day)
- If an animal is selected at random and it eats meat, what is the probability that it sleeps during the day?
- **c** What is the probability that an animal that sleeps during the day does not eat meat?
- a i P(sleeps only at night)

$$=\frac{68}{100}$$

$$=\frac{17}{25}$$

 \mathbf{ii} P(eats meat or sleeps during day)

$$= \frac{72}{100}$$

$$= \frac{18}{25}$$

b P(sleeps during day, given that the animal eats meat)

$$=\frac{20}{60}$$

$$=\frac{1}{2}$$

c P(does not eat meat, given that animal sleeps during the day)

$$=\frac{1}{3}$$