1 If *k* and *M* are integers, which of the following expressions does *not* always generate an integer?

A $9M + 4 \times 7k$

B $9M-4\times7k$

C $9M \div 4 \times 7k$

D $9M \times 4 \times 7k$

Prove by induction

4 $3^n + 2^n$ is divisible by 5 for all odd integers $n \ge 1$. **5** $5^n + 2(11^n)$ is a multiple of 3 for all positive integers n.

- **6** (a) Factorise k(k+1)(k+2) + 3(k+1)(k+2).
 - **(b)** Hence prove that n(n+1)(n+2) is divisible by 3 for all positive integers n.

- 7 $3^{3n} + 2^{n+2}$ is divisible by 5 for all positive integers n.
- 8 $7^n 2^n$ is divisible by 9 for all even integers greater or equal to 2

- **14** (a) Show that $(k+3)^3 = k^3 + 9k^2 + 27k + 27$.
 - **(b)** Hence prove that the sum of the cubes of three consecutive positive integers is divisible by 3.

Prove that the polynomial $(x-1)^{n+2} + x^{2n+1}$ is divisible by $x^2 - x + 1$ for all positive integers n. (*Note*: In step 2, you can't say $(x-1)^{k+2} + x^{2k+1} = (x^2 - x + 1)M$ where M is an integer. You must say $(x-1)^{k+2} + x^{2k+1} = (x^2 - x + 1)M(x)$, where M(x) is a polynomial, and continue this through the rest of the proof.)

16 Prove that $x^n - 1$ is divisible by x - 1 for all positive integers n. (Use $x^{k+1} - 1 = x^{k+1} - x^k + x^k - 1$.)