USING INDUCTION TO PROVE FIRST ORDER RECURSIVE FORMULAS

A recursive formula is when one term is defined in terms of one or more preceding terms.

A **recursive** definition of a function allows you to evaluate the function at a certain value of n using value(s) of the function at some other value(s) of n.

A **closed form** definition allows a function to be evaluated directly from the required value of n.

Example 25

A sequence $\{u_n\}$ is defined recursively as $u_1 = 2$, $u_2 = 6$, $u_n = 6u_{n-1} - 5u_{n-2}$ for $n \ge 3$.

Prove by induction the closed form definition $u_n = 5^{n-1} + 1$ for all integers $n \ge 1$.

Solution

Step 1 Prove true for the two initial cases.

n = 1: $u_1 = 5^{1-1} + 1 = 2$, which agrees with the recursive definition.

n = 2: $u_2 = 5^{2-1} + 1 = 6$, which agrees with the recursive definition.

The proposition is true for n = 1 and n = 2.

Step 2 Assume the proposition is true for all integers from 1 to k. Thus prove that it is true for n = k + 1.

i.e. assume:
$$u_1 = 5^{1-1} + 1$$

 $u_2 = 5^{2-1} + 1$
 $u_3 = 5^{3-1} + 1$
...
 $u_{k-1} = 5^{(k-1)-1} + 1 = 5^{k-2} + 1$
 $u_k = 5^{k-1} + 1$

For
$$n = k + 1$$
: $u_{k+1} = 6u_{(k+1)-1} - 5u_{(k+1)-2}$ (using the recursive definition)
 $= 6u_k - 5u_{k-1}$
 $= 6(5^{k-1} + 1) - 5(5^{k-2} + 1)$
 $= 6 \times 5^{k-1} + 6 - 1 \times 5^{k-1} - 5$
 $= 5 \times 5^{k-1} + 1$
 $= 5^k + 1$ which is the closed form definition.

Step 3 Conclusion

The proposition is true for n = k + 1 if it is true for n = 1, 2, ... k.

It is true for n = 1, 2.

 \therefore by induction, it is true for all integers $n \ge 1$.

USING INDUCTION TO PROVE FIRST ORDER RECURSIVE FORMULAS

Example 26

- (a) If $u_{r+1} = 2u_r + 1$ for all positive integer values of r, prove that $u_n + 1 = 2^{n-1}(u_1 + 1)$.
- **(b)** Find the value of $\sum_{r=1}^{n} u_r$ if $u_1 = 1$.

Solution

(a)
$$r = 1$$
: $u_2 = 2u_1 + 1$
Consider $u_n + 1 = 2^{n-1}(u_1 + 1)$.

Consider
$$u_n + 1 = 2^{n-1}(u_1 + 1)$$
.
Step 1 When $n = 1$: LHS = $u_1 + 1$; RHS = $2^0(u_1 + 1) = u_1 + 1 =$ LHS
Hence the result is true for $n = 1$.
When $n = 2$: LHS = $u_2 + 1 = 2u_1 + 2$; RHS = $2^1(u_1 + 1) = 2u_1 + 2 =$ LHS
Hence the result is true for $n = 2$.

Step 2 Assume the result is true for n = k, given $u_{k+1} = 2u_k + 1$, i.e. assume that $u_k + 1 = 2^{k-1}(u_1 + 1)$. Prove the result is true for n = k + 1, i.e. prove that $u_{k+1} + 1 = 2^k(u_1 + 1)$.

LHS =
$$u_{k+1} + 1$$

= $2u_k + 1 + 1$
= $2(u_k + 1)$
= $2(2^{k-1}(u_1 + 1))$
= $2^k(u_1 + 1)$
= RHS

Step 3 The result is true for n = k + 1 if it is true for n = k. But the result is true for n = 1, hence it is true for n = 1 + 1 and by the principle of mathematical induction it is true for all $n \ge 1$.

(b)
$$u_r = 2^{r-1}(1+1)-1$$

 $= 2^r - 1$
 $\sum_{r=1}^n u_r = \sum_{r=1}^n (2^r - 1) = \sum_{r=1}^n 2^r - n$
 $= \frac{2(2^n - 1)}{2 - 1} - n$
 $= 2^{n+1} - n - 2$